

Valence

Bag of Features: A Multi-Instance Learning Perspective on QSAR

Building tooling to support discovery programs from start to finish

Screening & Scoring

Structure-based

- · Large-scale docking
- ML-enabled scoring
- Interaction profiling
- 3D-aware representations

Ligand-based

- Representation learning
- Uncertainty estimation & active learning
- Out-of-distribution generalization
- Few-shot, meta, & transfer learning

Structure-based

- Structure-constrained
 3D design
- Target-conditioned generation
- Fragment-based linkage
- · Docking optimization

Ligand-based

Generative Design

- Synthetically-accessible reinforcement learning
- Retrosynthesis optimized fragment-based design
- Adversarial design
- · Graph-based design

Library generation

- Rule-based molecular enumeration
- ML-augmented matched molecular pairs analysis

Multiparameter Optimization

Hit expansion & LO

- Large-scale molecular search and Bayesian optimization
- · Ligand-based generative models
- Evolutionary algorithms for pareto optimization

Scaffold hopping

 Scaffold-invariant property optimization

Integration & Collaboration

ReactR

- Molecule review platform
- Chemist in the loop active learning

Patentor

- Automated SAR extraction from patent data
 - Data visualization
 - Design cycle management

· File and data

management

Kernel

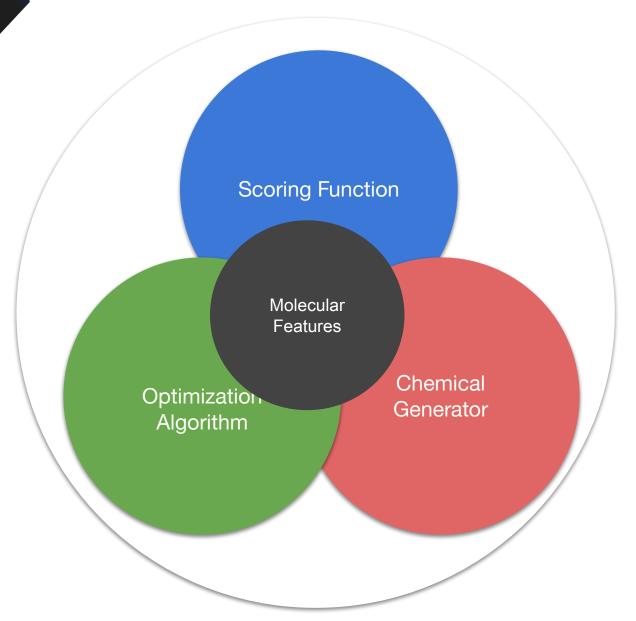
Circus

- Rapid, large scale similarity search
- Retrosynthesis

How can we adapt Al models to localized chemistry in the absence of large datasets?

- Better uncertainty calibration!
- Few shot learning algorithm with better OOD generalization!
- Better representation!

Molecular representation for machine learning: key to success



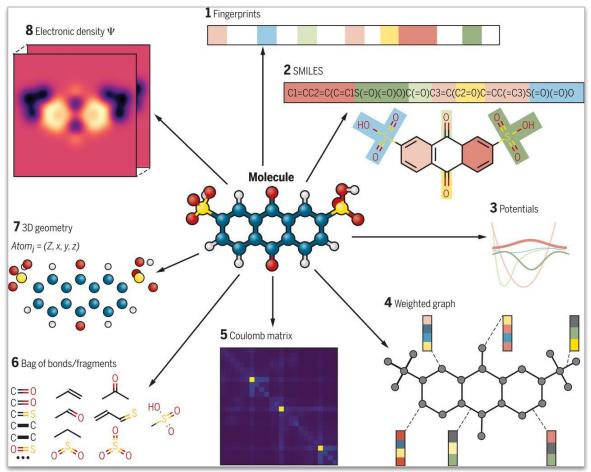
"A method cannot save an unsuitable representation which cannot remedy irrelevant data for an ill thought-through question"

Bender & Cortes-Ciriano, 2021: doi/10.1016/j.drudis.2020.11.037

But what constitutes a "good" molecular representation (for Machine Learning)?

- Information preservation
- Accuracy and robustness
- Compatibility with SOTA ML algorithms
- Ease of conversion
- Relevance to the task

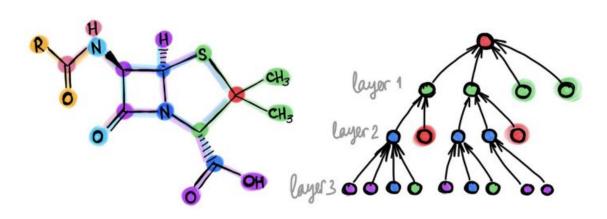
Not all molecular representations are equal



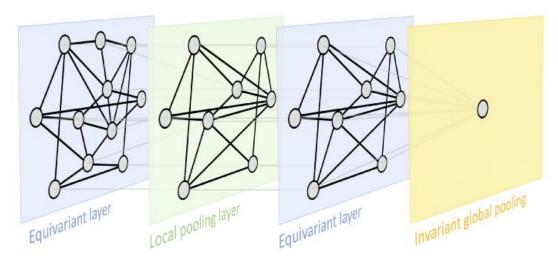
Sanchez-Lengeling and Aspuru-Guzik, 2018

- Multiple ways to represent molecules for generative/predictive modelling
- Each with its own strength and limitation and learning algorithm that matches best
- Hand-crafting molecular features vs
 learning features for task specific/agnostic
 objectives

Geometric deep learning: promise vs reality



Original image: M. Bronstein Do we need deep graph neural networks?

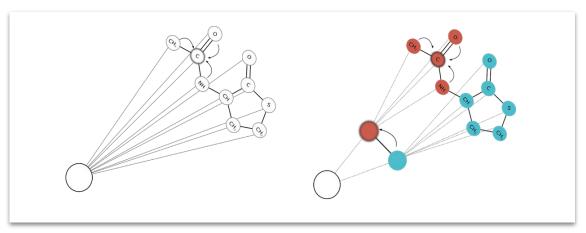


Original image: Geometric Deep Learning blueprint, M. Bronstein

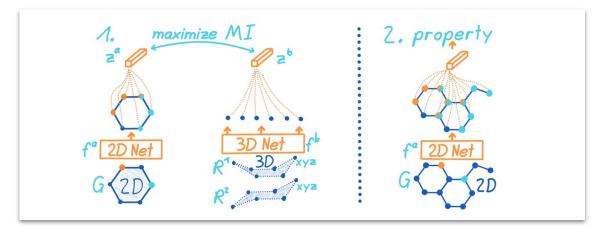
- Extraction of relevant predictive features (from ligands and ligand-target complexes)
- Ability to learn more abstract features (larger receptive field from deeper architecture)

- Limited expressive power
- Oversmoothing
- Bottleneck (over squashing)
- No formal gain in low data regime

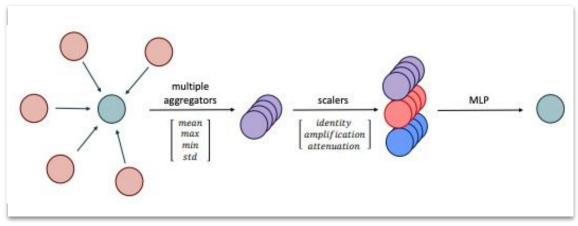
Recent work in GNN space to offset known limitations



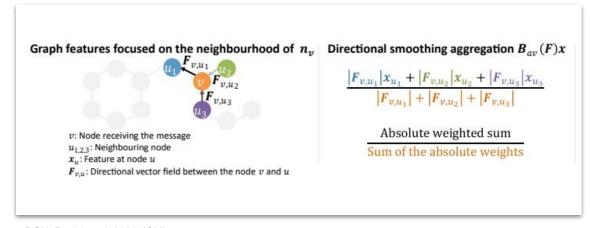
LaPool: Noutahi et al. 2019, arXiv



3D Pretraining, Stärk et al. 2021, under review

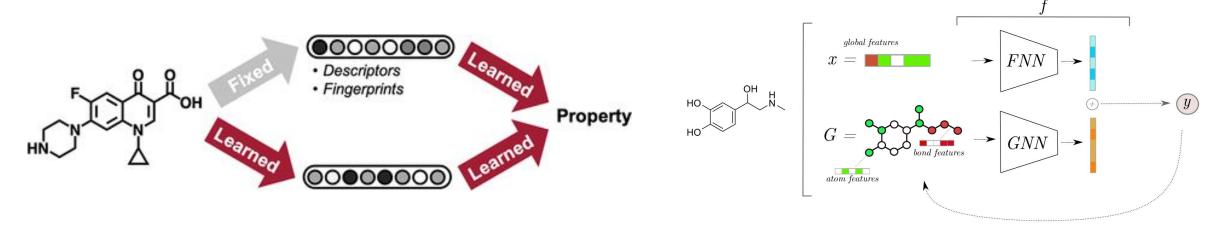


PNA: Corso et al., 2020, NeurIPS



DGN: Beaini et al. 2021, ICML

GNN for QSPR in practice: supplementing learned features with fixed descriptors



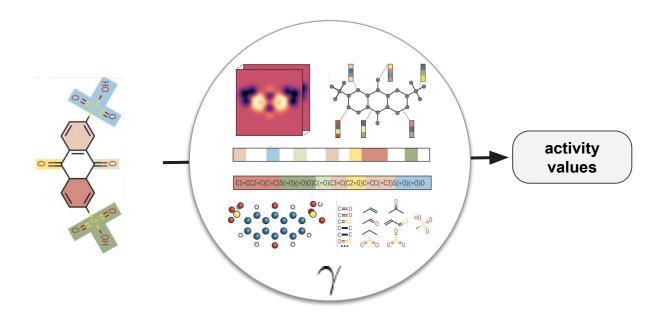
ChemProp: Yang and al. 2019 doi/10.1021/acs.jcim.9b00237

Jiménez-Luna et al. 2020 doi/10.26434/chemrxiv.13252286.v1

Incorporation of external information from computed features/descriptors to GNN can be very beneficial

Hypothesis: Using multiple molecular perspective would yield richer representation which in turn would enable improvement on QSPR tasks

Multi-instance learning to enable multiple molecular perspectives



There exists a perspective γ_i on the molecules of maximum information, w.r.t to the predictive task:

$$\{\inf_{\gamma \in \Gamma^*} \Delta[f(\gamma(x), y)]\}$$

Should we search over all perspectives?

How do we deal with increased feature space and avoid overfitting?

A quick introduction to multi-instance learning



Negative Bags
Label = 0

Positive Bags
Label = +1

- Objective: label a bag of samples instead of a sample
- Involves the notion of **set encoding** or **prediction aggregation** due to permutation invariance in sets

$$S(X) = g\left(\sum_{\mathbf{x} \in X} f(\mathbf{x})\right) \qquad |S(X) - g\left(\max_{\mathbf{x} \in X} f(\mathbf{x})\right)| < \varepsilon$$

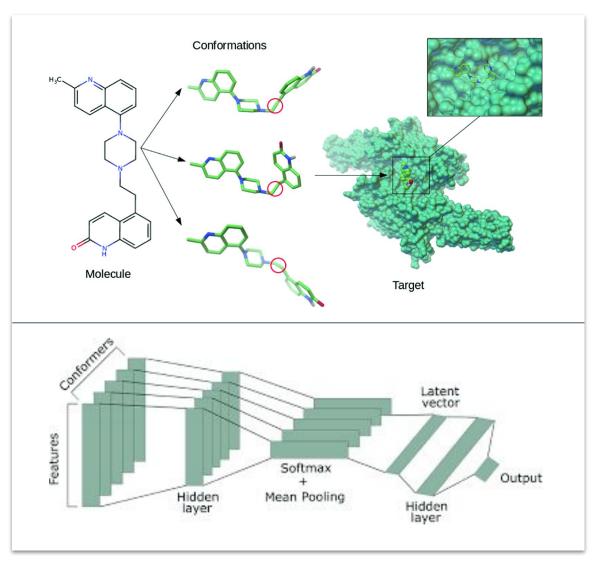
- Why not multi-view? Accommodates better to changing and missing "instances"
- Should there be confidence in number?

Sound familiar?

- Objective: label a bag of molecular representation/state instead of a single state
- Involves the notion of **set encoding** or **prediction aggregation** due to permutation invariance in sets

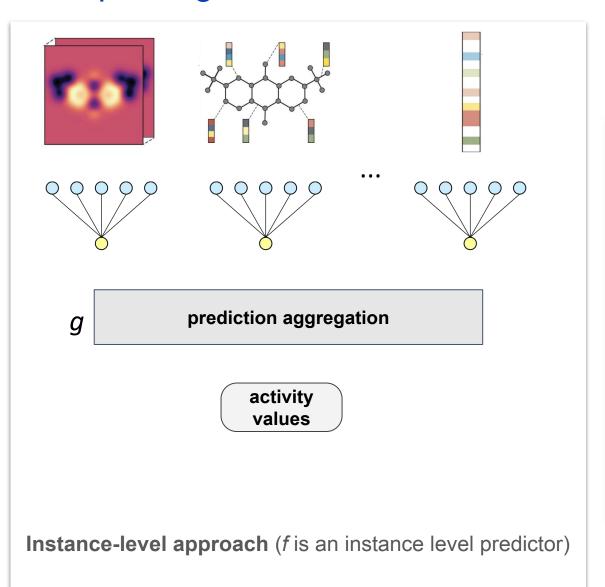
$$S(X) = g\left(\sum_{\mathbf{x} \in X} f(\mathbf{x})\right) \quad |S(X) - g\left(\max_{\mathbf{x} \in X} f(\mathbf{x})\right)| < \varepsilon$$

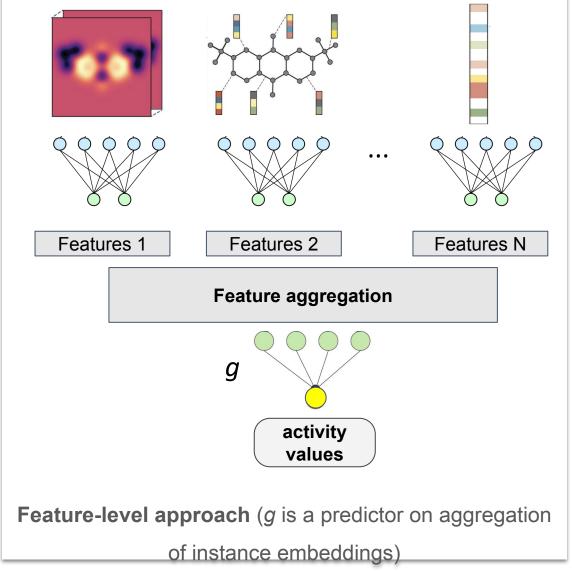
- Why not multi-view? Accommodates better to changing and missing "molecular perspectives"
- Should there be confidence in number?



Zankov et al. 2020 https://link.springer.com/chapter/10.1007/978-3-030-39575-9_7

Two paradigms for multi-instance learning





Attention-based mechanism for aggregation

Mean	Max	LSE (LogSumExp)	Additive Attention	Gated-Attention	Set2Set
$\mathbf{z} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{h}_k$	$z_m = \max_{k=1,\dots,K} \{\mathbf{h}_{km}\}$	$oldsymbol{z} = \logig(\sum_k \exp(oldsymbol{h}_k)ig)$	$\mathbf{z} = \sum_{k=1}^{K} a_k \mathbf{h}_k \ a_k = rac{\exp\{\mathbf{w}^{ op} anh\left(\mathbf{V}\mathbf{h}_k^{ op} ight)\}}{\sum\limits_{j=1}^{K} \exp\{\mathbf{w}^{ op} anh\left(\mathbf{V}\mathbf{h}_j^{ op} ight)\}}$	$\mathbf{z} = \sum_{k=1}^{K} a_k \mathbf{h}_k$ $a_k = \frac{\exp\{\mathbf{w}^{ op}(anh(\mathbf{V}\mathbf{h}_k^{ op}) \odot \operatorname{sigm}(\mathbf{U}\mathbf{h}_k^{ op}))\}}{\sum\limits_{j=1}^{K} \exp\{\mathbf{w}^{ op}(anh(\mathbf{V}\mathbf{h}_j^{ op}) \odot \operatorname{sigm}(\mathbf{U}\mathbf{h}_j^{ op}))\}},$	$\mathbf{z}_{t} = \text{LSTM}(\mathbf{z}_{t-1}^{*})$ $\alpha_{i,t} = \text{softmax}(\mathbf{x}_{i} \cdot \mathbf{z}_{t})$ $\mathbf{z}_{t} = \sum_{i=1}^{N} \alpha_{i,t} \mathbf{h}_{k}$ $\mathbf{z}_{t}^{*} = \mathbf{z}_{t} \ \mathbf{r}_{t},$

- Attention is trainable, flexible and adaptive
- A good choice for both instance and feature level aggregation
- Interpretable: which features are the most important for the task on a given molecule?

Does this framework improve prediction on relevant QSAR endpoints?

Setup

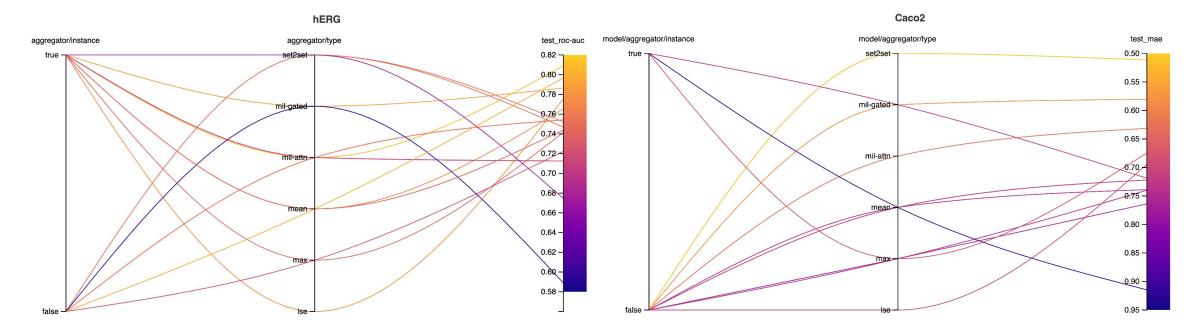
- 5 datasets from **TDC** (Therapeutics Data Commons)
- 5 Molecular Perspectives:
 - MACCS keys, FCFP radius 2, 2D Descriptors (RDKit), GCN, MPNN
- Fixed HP search budget of 50 (including aggregator framework) using optuna
- Separate test set, single network, 5 splits train/valid

	Task	Metric	Size	TDC Baseline	Chembag
Classification	hERG (hERG blockers)	AUROC ↑	648	0.841 ± 0.020	0.853 ± 0.010
	BBB_Martins (Blood-Brain Barrier)	AUROC ↑	1,975	0.889 ± 0.016	0.902 ± 0.004
	AMES (Mutagenicity)	AUROC ↑	7,255	0.823 ± 0.011	0.859 ± 0.003
Regression	CACO2 (Permeability)	MAE ↓	906	0.393 ± 0.024	0.371 ± 0.029
	Solubility_AqSolDB (Solubility)	MAE ↓	9,982	0.827 ± 0.047	0.835 ± 0.021

Importance of aggregation framework and type

Setup

- Fix all (hyper) parameters except for aggregation function and type
- Compare performance on classification and regression tasks



- Aggregation function is evidently important in measured performance.
- Feature wise aggregation performs better on average, especially for regression tasks
- Some combination clearly are hits or misses, but ATTENTION/SET2SET pooling consistent

Can we transfer learned features on downstream tasks?

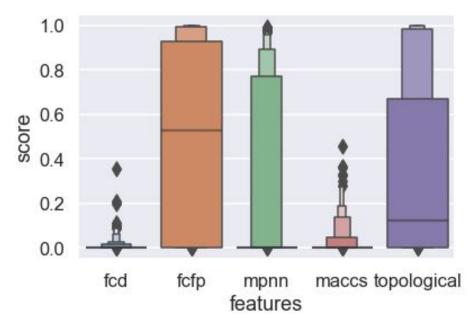
Setup

- Use a pretrained model (feature aggregator) on a larger dataset: PCBA (400K molecules, 128 tasks) ~ 40 epochs
- Can features extracted from that model be predictive of a new task? Using a simple machine learning model?

Task	Size	TDC Baseline	Chembag	Chembag Pretrained (PCBA)
hERG (hERG blockers)	648	0.841 ± 0.020	0.853 ± 0.010	0.835 ± 0.069
BBB_Martins (Blood-Brain Barrier)	1,975	0.889 ± 0.016	0.902 ± 0.004	0.892 ± 0.010
AMES (Mutagenicity)	7,255	0.823 ± 0.011	0.859 ± 0.003	0.823 ± 0.009

Conclusion

- Multi-instance framework has interesting applications in QSAR
- Very competitive across a wide range of tasks, with pretraining on large dataset an avenue to be explored further
- Attention weights can be used to rank features' contributions to predictive accuracy on a given task
- Formal characterization and further exploration of the framework still needed



"Model Interpretability on BBB prediction"

Valence

To learn more, please visit: www.valencediscovery.com

