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ABOUT VALENCE

Building tooling to support discovery programs from start to finish
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and Bayesian optimization property optimization platform extraction from management scale similarity

« Ligand-based generative models « Chemist in the patent data + Data visualization search

+ Evolutionary algorithms for loop active + Design cycle * Retrosynthesis
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How can we adapt Al models to localized
chemistry in the absence of large datasets?

« Better uncertainty calibration !
« Few shot learning algorithm with better OOD generalization !
 Better representation !



Molecular representation for machine learning: key to success
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“A method cannot save an unsuitable representation
which cannot remedy irrelevant data for an ill
thought-through question”

Bender & Cortes-Ciriano, 2021: doi/10.1016/j.drudis.2020.11.037

But what constitutes a “good” molecular
representation (for Machine Learning) ?

- Information preservation

- Accuracy and robustness

- Compatibility with SOTA ML algorithms
- Ease of conversion

- Relevance to the task




Not all molecular representations are equal
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Multiple ways to represent molecules for

generative/predictive modelling

Each with its own strength and limitation

and learning algorithm that matches best

Hand-crafting molecular features vs
learning features for task specific/agnostic

objectives




Geometric deep learning: promise vs reality
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Original image: M. Bronstein Do we need deep graph neural networks? Original image: Geometric Deep Learning blueprint, M. Bronstein




Recent work in GNN space to offset known limitations
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GNN for QSPR in practice: supplementing learned features with fixed
descriptors
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ChemProp: Yang and al. 2019 doi/10.1021/acs.jcim.9b00237 Jiménez-Luna et al. 2020 doi/10.26434/chemrxiv.13252286.v1
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Incorporation of external information from computed features/descriptors to GNN
can be very beneficial

Hypothesis: Using multiple molecular perspective would yield richer representation
which in turn would enable improvement on QSPR tasks



Multi-instance learning to enable multiple molecular perspectives

There exists a perspective 7; on the
molecules of maximum information, w.r.t to

the predictive task:
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How do we deal with increased feature
space and avoid overfitting ?



A quick introduction to multi-instance learning

Negative Bags
Label =0

Positive Bags
Label =+1

Objective: label a bag of samples instead of a
sample

Involves the notion of set encoding or prediction
aggregation due to permutation invariance in sets

S(X)=9( Y f(0)  |S(X) - g(max f(x))| <e

xeX

Why not multi-view? Accommodates better to
changing and missing “instances”

Should there be confidence in number?
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Sound familiar?

Conformations

Objective: label a bag of molecular |

representation/state instead of a single state (j
Involves the notion of set encoding or prediction -
aggregation due to permutation invariance in sets Py
Molecule
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changing and missing “molecular perspectives” g
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Should there be confidence in number? layer

Zankov et al. 2020 https://link.springer.com/chapter/10.1007/978-3-030-39575-9_7
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Two paradigms for multi-instance learning

g prediction aggregation

Features 1 Features 2 Features N

Feature aggregation
activity

[ values } g %2
activity
values

Instance-level approach (fis an instance level predictor) Feature-level approach (g is a predictor on aggregation

—of instance embeddings)
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Attention-based mechanism for aggregation
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- Attention is trainable, flexible and adaptive
- A good choice for both instance and feature level aggregation

- Interpretable: which features are the most important for the task on a given

molecule ?
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Does this framework improve prediction on relevant QSAR endpoints ?

Setup
5 datasets from TDC (Therapeutics Data Commons)

5 Molecular Perspectives:
- MACCS keys, FCFP radius 2, 2D Descriptors (RDKit), GCN, MPNN

Fixed HP search budget of 50 (including aggregator framework) using optuna

Separate test set, single network, 5 splits train/valid

~ oo

Classification

Regression

Task

hERG (hERG blockers)

BBB_ Martins

(Blood-Brain Barrier)

AMES (Mutagenicity)

CACO2 (Permeability)

Solubility AqSolDB

(Solubility)

Metric

AUROC 1

AUROC 1

AUROC 1

MAE |

MAE |

Size

648

1,975

7,295

906

9,982

TDC Baseline

0.841 + 0.020

0.889 + 0.016

0.823 + 0.011

0.393 + 0.024

0.827 + 0.047

Chembag
0.853 £ 0.010

0.902 + 0.004

0.859 + 0.003

0.371 £ 0.029

0.835 +0.021
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Importance of aggregation framework and type

Setup
- Fix all (hyper) parameters except for aggregation function and type
- Compare performance on classification and regression tasks

hERG Caco2

aggregator/instance aggregator/type test_roc-auc model/aggregator/instance model/aggregator/type test_mae
0.82 true — set2set — 0.50

true

mil-gate

false

- Aggregation function is evidently important in measured performance.
- Feature wise aggregation performs better on average, especially for regression tasks
- Some combination clearly are hits or misses , but ATTENTION/SET2SET pooling consistent
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Can we transfer learned features on downstream tasks ?

Setup

Use a pretrained model (feature aggregator) on a larger dataset: PCBA (400K
molecules, 128 tasks) ~ 40 epochs

Can features extracted from that model be predictive of a new task? Using a simple
machine learning model?

Task Size TDC Baseline Chembag Chembag Pretrained (PCBA)
hERG (hERG blockers) | 648 0.841 £ 0.020 0.853 £ 0.010  0.835 £ 0.069
BBB_Martins 1,975 0.889 + 0.016 0.902 £+ 0.004  0.892 £ 0.010

(Blood-Brain Barrier)

AMES (Mutagenicity) 7,255 0.823 + 0.011 0.859 + 0.003 0.823 + 0.009
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Conclusion

Multi-instance framework has interesting
applications in QSAR

Very competitive across a wide range of tasks,
with pretraining on large dataset an avenue to
be explored further

Attention weights can be used to rank features’
contributions to predictive accuracy on a given
task

Formal characterization and further exploration
of the framework still needed
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“Model Interpretability on BBB prediction”
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To learn more, please visit:
www.valencediscovery.com

18


http://www.valencediscovery.com/

