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Overview

e Introduction to deep learning imputation using Alchemite™
e Data set and objectives

e Model validation

— Comparing global and project-specific models
- Assessing model confidence estimates

e Application of a global deep learning model to project optimisation

- Multi-parameter optimisation for an anti-TB therapeutic objective

e Conclusions
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Introduction to Deep Learning Imputation using Alchemite™



Prediction vs. Imputation

e Prediction uses input ‘features’ to predict one or more property values for a
compound, e.g. QSAR models

e Imputation is the process of filling in the gaps in sparse experimental data using
the limited results that are already available
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Alchemite™ Deep Learning Imputation
Optibrium’s exclusive partnership with Intellegens o

e Learns directly from relationships between experimental endpoints as well as SAR

— Makes better use of sparse and noisy experimental data than conventional QSAR models

e ‘Fills in’ the gaps in your data and makes predictions for ‘virtual’ compounds
- Generates more accurate predictions to target high-quality compounds
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Alchemite™ Deep Learning Imputation
Optibrium’s exclusive partnership with Intellegens 0

e Estimates uncertainty in each individual prediction

— Highlights the most accurate predictions on which to base decisions

e Confidently targets high-quality compounds and prioritise experimental resources
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Objectives and Data Set



Overview N

DUNDEE

e Goal: More accurately predict TB activities and ADME properties to guide
optimisation of compounds in a project context
— Compare project-specific versus ‘global’ models

— Compare imputation and virtual models

e Summary of Data
- Global data set

o 300,000 compounds x 468 experimental endpoints across several developing-world/neglected diseases
o 3.1% complete
— Project data set — a subset of global data set corresponding to a single TB project

o 495 compounds x 34 experimental endpoints

o 40.6% complete
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Imputation vs Virtual Models

* Imputation: These models generate Application to Test Set
predictions for the test data points
using sparse assay data as input, in Descriptors Assays K , Imputed Data

addition to molecular descriptors 1 ‘:E_ | T
— These models test an Alchemite model’s K
ability to “fill in the gaps’ in the LA
experimental data for compounds that
have been synthesised and tested in some
assays

.-!'

e Virtual: These models are built to

expect only molecular descriptors as
input.

e e,
— These test an Alchemite model’s ability to 1 Ei:l— “r e '

make predictions based only on compound
structure, i.e., for a compound that has not
yet been synthesised or tested
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Assessment of Results
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Model Validation



Global Models Test Set Results
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The Imputation model

clearly outperforms the
Virtual model
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Alchemite Imputation 0.35 159 248
Alchemite Virtual 0.10 44 137
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Global and Project-specific Model Performance on Project Test Set > ’

DUNDEE
Global and project-specific
Imputation models achieve
almost identical performance

i Median

Global Virtual model
outperforms project-specific
Virtual model
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Focusing on the Most Confident Results
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Focusing on the Most Confident Results -
TB Activity Endpoint a

DUNDEE

0.30
|
—

| | -,;!!.}*!
)l'lir

I I 1 1 T T I I I 1
0 20 40 60 80 100 -7 -6 5 -4

Most confidently predicted percentage of test set Observed log(MIC) (log M)

025
|

020
|

RMSE
0.15

010
|

0.05
|

Predicted log(MIC) (log uM)

*  Alchemite Imputation

*  Average Alchemite Error

000
|

“optibriur
S

15 © 2021 Optibrium Ltd.



Focusing on the Most Confident Results -
TB Activity Endpoint a
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* Excellent correlation between model confidence (error bars) and observed accuracy

* Qutliers clearly identified for further investigation
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Focusing on the Most Confident Results
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Focusing on the Most Confident Results

&
Hepatocyte Clearance
DUNDEE
"7 Full test set R2=0.31
© o °
O
C
o
L ©
78] Q o
= . o 7
e ©
Q
1 kS
| 21 | Lk
: I E ﬂl}j :}:'II | I ||
: ]
* Alchemite Imputation o b L] el e I S
o I * Average Alchemite Error o ‘
[I! 2IO 4ID BIO EIO 1 l;O OI 1 IO 2IO BIO 4‘0
Most confidently predicted percentage of test set Observed Clearance

“optibriur
S

18 © 2021 Optibrium Ltd.



Focusing on the Most Confident Results

Hepatocyte Clearance 4
DUNDEE
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* Even for model with poor overall performance, we can identify accurate predictions
that can be used with confidence
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Application of the Global Deep Learning Model
to TB Project Optimisation



TB Project Objectives N

e Desired compound property criteria: PUNDEE

Property Desired Value Importance

B TB Activity Assay 1 MIC (log M) inf -> -6.4 —
B TB Activity Assay 2 MIC (log M) -inf -> -6.4 [11] —
B FassiF Solubility (log mg/ml) -1-= inf —J:I
B Mouse PPE (log Fu) 13- 03 —

Solubility at pH 7.4 (log M) -4 = inf P —
B Mouse Hepatocyte Intrinsic Clearance (ml/min/g) -inf -> 1.5 —
B Mouse Microsome Intrinsic Clearance (ml/min/g) -inf -> 1.5 —

e Challenges achieving a balance of activity with hepatocyte stability and solubility

e Strategy: Explore a large virtual library enumerated around the series core

e Apply the global Alchemite Virtual model to all compounds to determine if the
desired balance of properties is likely to be accessible in this series
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Multi-Parameter Scores for TB Project < ‘
4
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Multi-Parameter Profiles
Balancing activity and hepatocyte stability

[y TB Project Profile mip ‘.TBActiwty Assay 1 M TB Activity Assay 2 M FaSSIF Solubility (log r B Mouse PPB (log Fu) 1 Solubility at pH 7.4 (I} M Mouse Hepatocyte Int Jll Mouse Microsome Inf DUNDE E
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Multi-Parameter Profiles
Balancing activity and solubility

@
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Project Application Conclusions N ’

DUNDEE

e Compounds are predicted to achieve good activity or hepatocyte stability
or good solubility

e However, it is unlikely that compounds in this series will be able to
achieve all three criteria simultaneously

e The application of a high-quality multi-parameter model enables a very
rigorous exploration of chemical space around the series of interest

e Synthesis of a small number of selected compounds will enable the
validation of this predicted hypothesis — saving time and resources
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Summary

e Alchemite was used to build Imputation and Virtual models using a sparse data of 300,000
compounds across approximately 500 experimental endpoints

— No loss of accuracy over project-specific models, even for unrelated endpoints and project chemistries

— Consistent with findings in collaboration with Constellation Pharmaceuticals on a smaller-scale data set
(J. Chem. Inf Model. (2020) 60(6), pp. 2848—2857)

— The global Virtual model was more accurate due to additional chemical diversity in training set

— Build once, run everywhere...

o Save time — No need to build multiple, individual project models

o Maximise information — Learn across multiple projects, chemistries and therapeutic areas simultaneously

e Strong agreement confirmed between model confidence and observed accuracy
— Focus on the most valuable results for decision-making, even for models with poor headline accuracy

e Example application to a TB project

— Combined with multi-parameter optimisation
- Unwelcome result for the project, but saves expending time and effort with a low probability of success
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