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Overview
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• Introduction to deep learning imputation using Alchemite™

• Data set and objectives

• Model validation

− Comparing global and project-specific models

− Assessing model confidence estimates

• Application of a global deep learning model to project optimisation

− Multi-parameter optimisation for an anti-TB therapeutic objective

• Conclusions



Introduction to Deep Learning Imputation using Alchemite™
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Prediction vs. Imputation

• Prediction uses input ‘features’ to predict one or more property values for a 
compound, e.g. QSAR models

• Imputation is the process of filling in the gaps in sparse experimental data using 
the limited results that are already available
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Alchemite™ Deep Learning Imputation
Optibrium’s exclusive partnership with Intellegens

• Learns directly from relationships between experimental endpoints as well as SAR

− Makes better use of sparse and noisy experimental data than conventional QSAR models

• ‘Fills in’ the gaps in your data and makes predictions for ‘virtual’ compounds

− Generates more accurate predictions to target high-quality compounds
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Whitehead et al. J. Chem Inf. Model. (2019) 59(3) pp. 1197-1204, B. Irwin et al. J. Chem. Inf Model. (2020) 60(6), pp. 2848–2857
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Whitehead et al. J. Chem Inf. Model. (2019) 59(3) pp. 1197-1204, B. Irwin et al. J. Chem. Inf Model. (2020) 60(6), pp. 2848–2857

• Estimates uncertainty in each individual prediction

− Highlights the most accurate predictions on which to base decisions

• Confidently targets high-quality compounds and prioritise experimental resources
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Alchemite™ Deep Learning Imputation
Optibrium’s exclusive partnership with Intellegens



Objectives and Data Set 
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Overview

• Goal: More accurately predict TB activities and ADME properties to guide 
optimisation of compounds in a project context

− Compare project-specific versus ‘global’ models

− Compare imputation and virtual models 

• Summary of Data

− Global data set 

o 300,000 compounds x 468 experimental endpoints across several developing-world/neglected diseases

o 3.1% complete

− Project data set – a subset of global data set corresponding to a single TB project

o 495 compounds x 34 experimental endpoints

o 40.6% complete
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Imputation vs Virtual Models
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• Imputation: These models generate 
predictions for the test data points 
using sparse assay data as input, in 
addition to molecular descriptors
− These models test an Alchemite model’s 

ability to ‘fill in the gaps’ in the 
experimental data for compounds that 
have been synthesised and tested in some 
assays

• Virtual: These models are built to 
expect only molecular descriptors as 
input.
− These test an Alchemite model’s ability to 

make predictions based only on compound 
structure, i.e., for a compound that has not 
yet been synthesised or tested

Application to Test Set

No experimental 
data used as input

Predictions
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Assessment of Results
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Model Validation
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Global Models Test Set Results
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Median R2 Number with
R2 > 0.5

Number with
R2 > 0.3

Alchemite Imputation 0.35 159 248

Alchemite Virtual 0.10 44 137

The Imputation model 
clearly outperforms the 
Virtual model
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Global and Project-specific Model Performance on Project Test Set
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Median R2 Number with
R2 > 0.5

Number with
R2 > 0.3

Project Imputation 0.65 21 23

Project Virtual 0.21 6 16

Global Imputation 0.61 19 24

Global Virtual 0.33 5 20

Global and project-specific 
Imputation models achieve 
almost identical performance

Global Virtual model 
outperforms project-specific  

Virtual model
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Focusing on the Most Confident Results
TB Activity Endpoint
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Focusing on the Most Confident Results
TB Activity Endpoint
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Focusing on the Most Confident Results
TB Activity Endpoint
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• Excellent correlation between model confidence (error bars) and observed accuracy

• Outliers clearly identified for further investigation
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Focusing on the Most Confident Results
Hepatocyte Clearance
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Focusing on the Most Confident Results
Hepatocyte Clearance
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Focusing on the Most Confident Results
Hepatocyte Clearance
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• Even for model with poor overall performance, we can identify accurate predictions 
that can be used with confidence
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Application of the Global Deep Learning Model
to TB Project Optimisation
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TB Project Objectives

• Desired compound property criteria:

• Challenges achieving a balance of activity with hepatocyte stability and solubility

• Strategy: Explore a large virtual library enumerated around the series core

• Apply the global Alchemite Virtual model to all compounds to determine if the 
desired balance of properties is likely to be accessible in this series
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Multi-Parameter Scores for TB Project
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No high-scoring compounds

D. Segall, Curr. Pharm. Des. 2012, 18 (9), 1292–1310
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Multi-Parameter Profiles
Balancing activity and hepatocyte stability
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TB Activity Assay 2
Mouse Hepatocyte
Intrinsic Clearance
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Mouse Hepatocyte Stability vs TB Activity Assay 2
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Mouse hepatocyte
Intrinsic Clearance (ml/min/g)
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Multi-Parameter Profiles
Balancing activity and solubility
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TB Activity Assay 2 FASSIF Solubility
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Project Application Conclusions

• Compounds are predicted to achieve good activity or hepatocyte stability 
or good solubility

• However, it is unlikely that compounds in this series will be able to 
achieve all three criteria simultaneously

• The application of a high-quality multi-parameter model enables a very 
rigorous exploration of chemical space around the series of interest

• Synthesis of a small number of selected compounds will enable the 
validation of this predicted hypothesis – saving time and resources
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Summary

• Alchemite was used to build Imputation and Virtual models using a sparse data of 300,000 
compounds across approximately 500 experimental endpoints

− No loss of accuracy over project-specific models, even for unrelated endpoints and project chemistries

− Consistent with findings in collaboration with Constellation Pharmaceuticals on a smaller-scale data set 
(J. Chem. Inf Model. (2020) 60(6), pp. 2848–2857)

− The global Virtual model was more accurate due to additional chemical diversity in training set

− Build once, run everywhere…

o Save time – No need to build multiple, individual project models

o Maximise information – Learn across multiple projects, chemistries and therapeutic areas simultaneously

• Strong agreement confirmed between model confidence and observed accuracy
− Focus on the most valuable results for decision-making, even for models with poor headline accuracy

• Example application to a TB project
− Combined with multi-parameter optimisation

− Unwelcome result for the project, but saves expending time and effort with a low probability of success

27
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