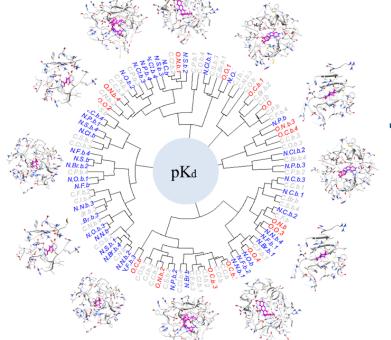


ML scoring functions to improve structure-based binding affinity prediction and virtual screening

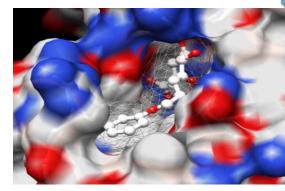
Dr Pedro Ballester

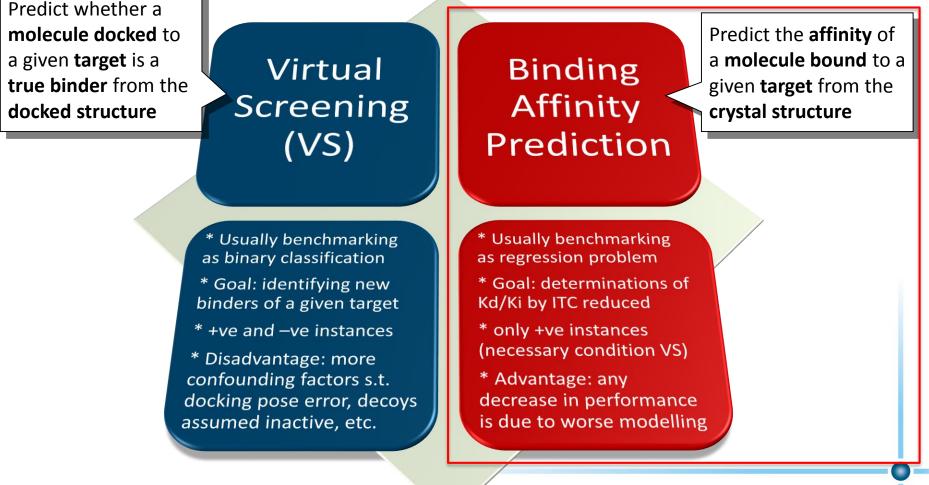
Group Leader at CRCM (France)



Related docking applications

Each application rely on the prediction provided by a scoring function (SF) \rightarrow important to develop SFs that are optimal for the intended application





Machine-learning Scoring Functions (RF-Score, 2010)

Structural bioinformatics

Advance Access publication March 17, 2010

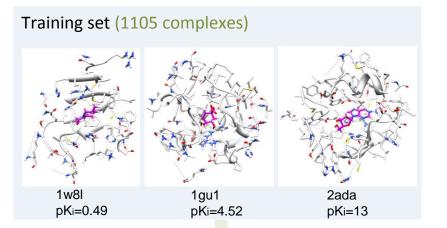
A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking

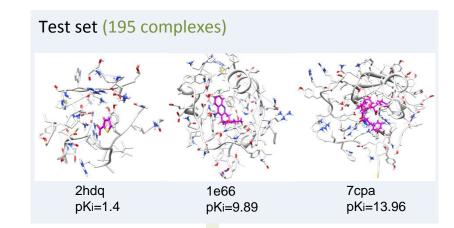
Pedro J. Ballester^{1,*,†} and John B. O. Mitchell^{2,*}

¹Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW and ²Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK Associate Editor: Burkhard Rost

- 1. Generic: structures of proteins from other families may improve prediction (complement structures of target)
- Providing that a sufficiently flexible regression model is used → Random Forest (Breiman, 2001)
- 3. Advantage: circumventing a priori assumptions about the SF's functional form may reduce modelling error

Training and testing RF-Score





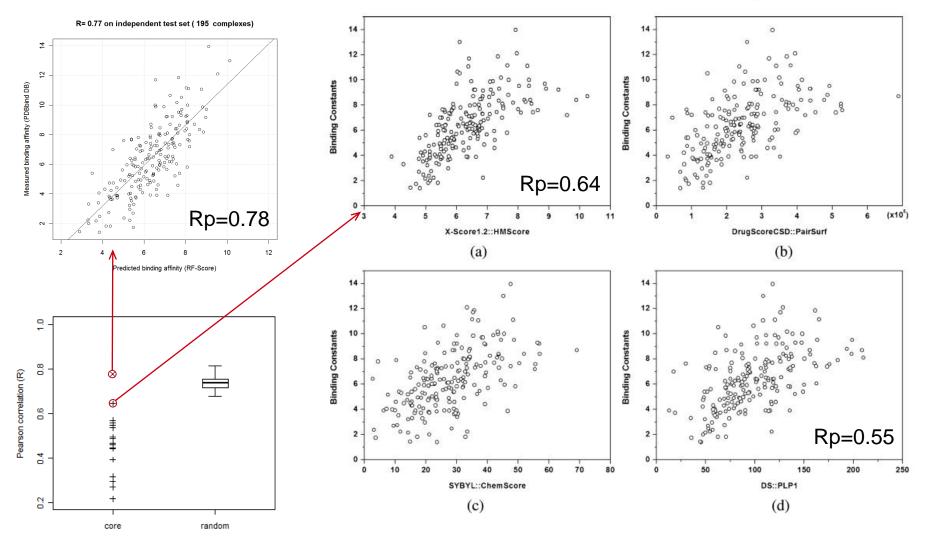
Generation of descriptors (d_{cutoff}, binning, interatomic types)

рК _{d/i}	C.C	-	C.I	N.C	-	1.1	PDB		рК _{d/i}	C.C	-	C.I	N.C	-	1.1	PDB
0.49	1254	-	0	166	-	0	1w8l	$\uparrow \qquad \uparrow$	1.40	858	-	0	0	-	0	2hdq
-	-	-	-	-	-	-	-	195 1105	-	-	_	-	-	-	-	-
13.00	2324	-	0	919	-	0	2ada		13.96	4476	-	0	283	-	0	7сра
Random Forest (RF) training						RF-Score										
(d	(descriptor selection, model selection)							(description and training choices)								

RF-Score-v1 performance on diverse test set

COMPARATIVE ASSESSMENT OF SCORING FUNCTIONS

J. Chem. Inf. Model., Vol. 49, No. 4, 2009 1087



Scoring Function Corsortium using RF-Score code

JOURNAL OF CHEMICAL INFORMATION AND MODELING

Article

2008

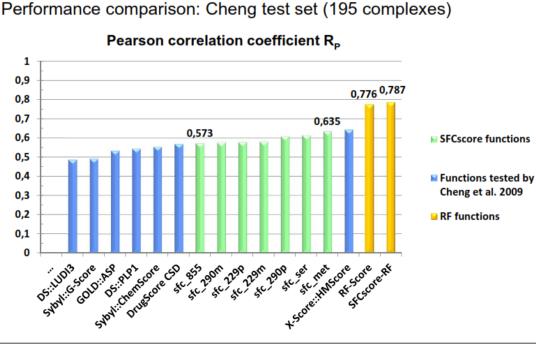
2013

SFCscore^{RF}: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes

David Zilian and Christoph A. Sotriffer*

Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, D-35032 Marburg, Germany

SFCscore^{RF}



http://infochim.u-strasbg.fr/CS3 2012/Lectures/Sotriffer.pdf

Scoring Functior Consort		
Astra	Aventis	
BASF	Boehringer	
Glaxo	Novo Nordis	sk
Pfizer	Agouron	
Roche	Schering	CCDC

pubs.acs.org/jcim

Best structural descriptors? RF-Score v2 in 2014

Systematic numerical study:

- Interatomic distance cutoffs
- Interatomic distance bin sizes
- Atom hybridisation and protonation state
- Angle between HBD, HBA and H atoms.
- Covalent and van der Waals radius of atoms.
- Basic feature selection.
- Model selection by OOB

JOURNAL OF CHEMICAL INFORMATION AND MODELING

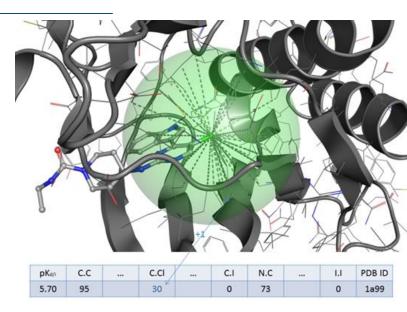
pubs.acs.org/jcim Terms of Use

Article

Does a More Precise Chemical Description of Protein-Ligand Complexes Lead to More Accurate Prediction of Binding Affinity?

Pedro J. Ballester, †,* Adrian Schreyer, ‡ and Tom L. Blundell ‡

[†]European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton - CB10 1SD, United Kingdom [‡]Dept. of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge - CB2 1GA, United Kingdom



Elem(c12,b2)_spr1_oob • Rp: 0.787 → 0.803

(= training set, = test set)

→ a data-driven feature selection procedure was more effective than a knowledge-based one

Analysing the improvement over classical SFs

Full Paper

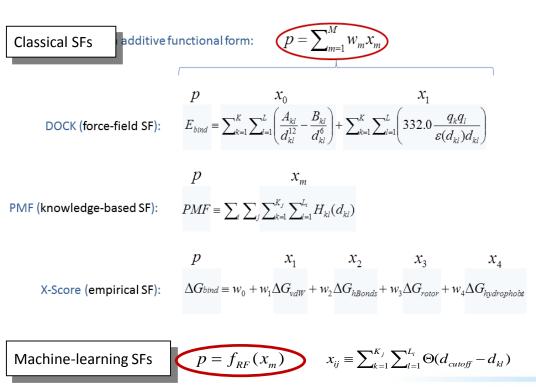
www.molinf.com

molecular informatics

DOI: 10.1002/minf.201400132

Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets

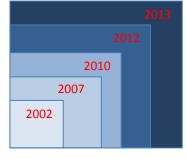
Hongjian Li,^[a] Kwong-Sak Leung,^[a] Man-Hon Wong,^[a] and Pedro J. Ballester*^[b, c]



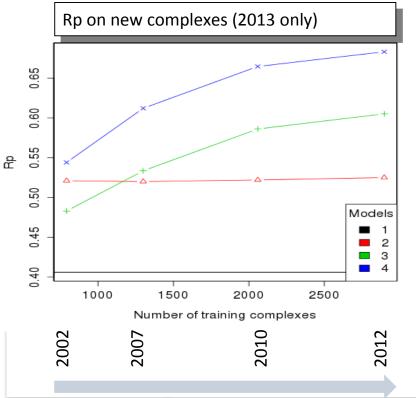
- 1. Autodock Vina off-the-shelf as a baseline (model 1)
- 2. Retrained Vina using its 6 features and MLR (model 2)
- 3. Retrained Vina using its 6 features and RF (model 3)
- 4. RF training on a merged
 vector with the 42 RF-Score
 v1 + Vina features (model 4)

The effect of training with more data in all models

From 5 releases of the PDBbind database



Generated 4 time-stamped data partitions with same test set (new structures released in 2013)



model 2 vs model 3: substituting MLR by RF using Vina features → MLR does not improve with more data, but RF does!

model 3 vs model 4: increasing the number of features also beneficial with RF

model 2 vs model 4: large gain over classical SFs due to RF being able to assimilate larger feature and data sets

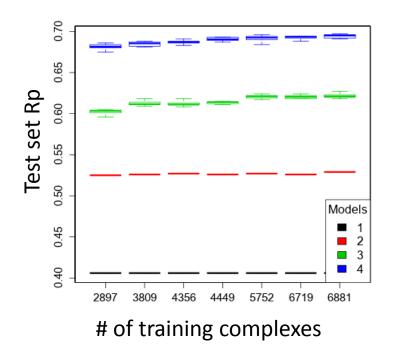
model 4 \rightarrow released as RF-Score v3

Trade-off quality vs quantity of training data

Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest

Hongjian Li¹, Kwong-Sak Leung¹, Man-Hon Wong¹ and Pedro J. Ballester^{2,*}

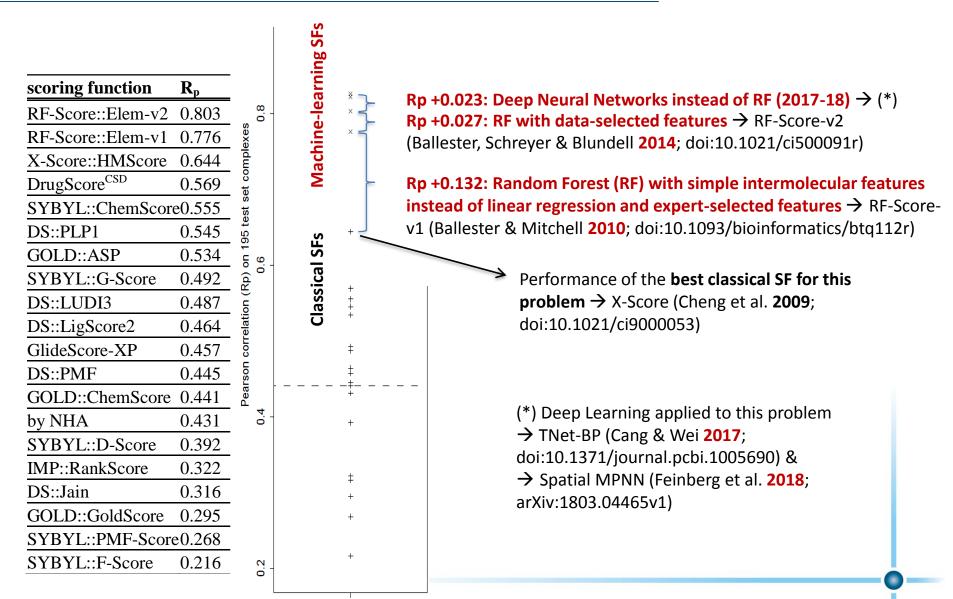
Molecules 2015, 20, 10947-10962; doi:10.3390/molecules200610947



Test Set	Training Sets
	refined12 (2897)
	general12_Kd/KiOnly \leq 2.5 Å (3809)
	general12_Kd/KiOnly \leq 3.0 Å (4356)
refined13\refined12 (382)	general12_Kd/KiOnly (4449)
	general 12 \leq 2.5 Å (5752)
	general12 \leq 3.0 Å (6719)
	general12 (6881)

Exploiting a larger data volume is more important for the performance of RF-Score than restricting to a smaller set of higher data quality

SFs tested on PDBbind benchmark (now CASF2007)

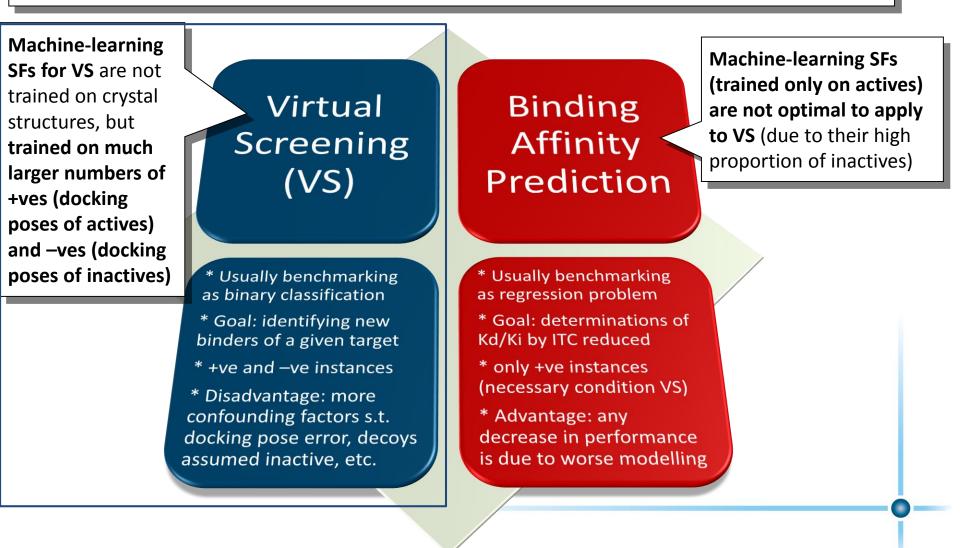


RF-Score codes for binding affinity prediction

- RF-Score v4 (trained on 3441 complexes with 47 features): <u>http://ballester.marseille.inserm.fr/rf-score-4.tgz</u>
- RF-Score v3 (trained on 2959 complexes with 42 features): <u>http://ballester.marseille.inserm.fr/rf-score-3.tgz</u>
- RF-Score v2 (python code to generate v2 descriptors): <u>https://bitbucket.org/aschreyer/rfscore</u>
- RF-Score v1 (C code to generate v1 descriptors and R scripts): <u>http://ballester.marseille.inserm.fr/RF-Score-v1.zip</u>

Machine-learning SFs for structure-based VS

REVIEW including both classes of ML SFs up to 2015: Ain et al. Wiley Interdiscip Rev Comput Mol Sci. 2015 Nov-Dec; 5(6): 405–424. doi: 10.1002/wcms.1225 **REST OF TALK**: RF-Score-VS

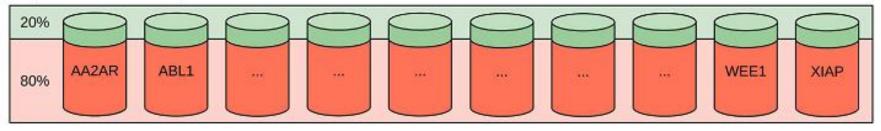


DUD-E: Generating data to build ML SFs for VS

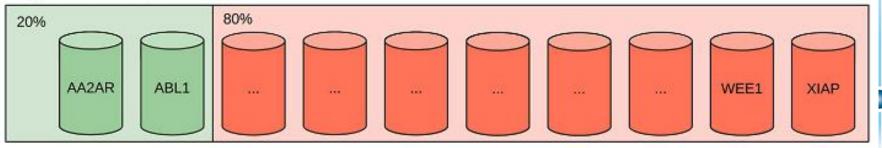
- DUD-E: Mysinger et al. 2012 (dx.doi.org/10.1021/jm300687e)
- 102 protein targets: on average 224 actives per target with their reported activities + 50 decoys per active (<= 1uM)
- Decoys: assumed inactive (~physicochemical to actives, but dissimilar chemical structure to reduce likelihood of being active)
- After docking with Smina implementation of Vina, 50 docking poses x (15 426 actives and 893 897 decoys) across targets
- 50 poses per molecule, but only kept best for training.
- Three RF-Score features: v1 (2010), v2 (2014) and v3 (2015).
- i.e. 909,323 data instances to train and validate each SF.
- Available at <u>https://wojcikowski.pl/rfscorevs/data/</u>

Cross-validating machine-learning SFs for VS

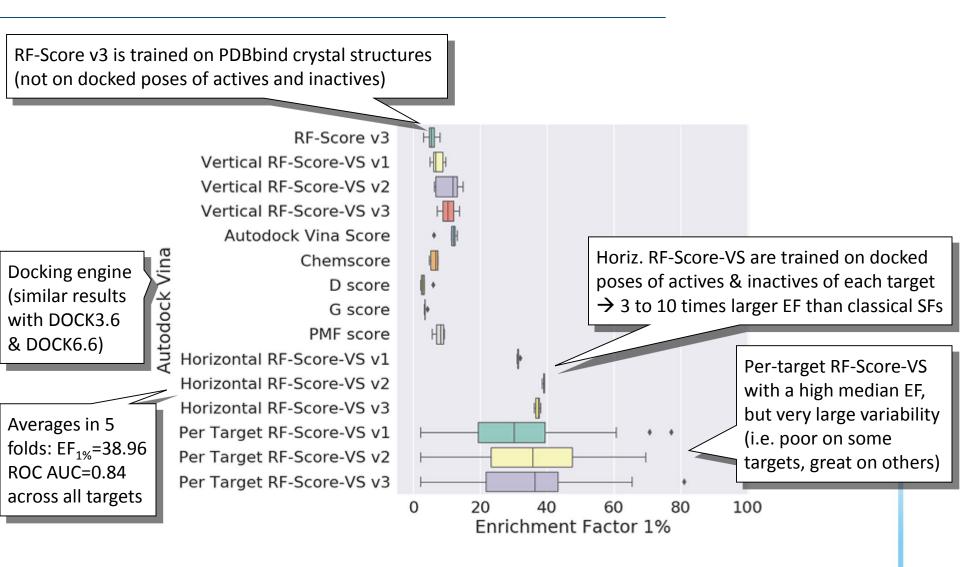
B) Horizontal Split : i.e. some actives known for all 102 targets



C) Vertical Split: i.e. absolutely no actives known for the target



DUD-E: Performance of classical and ML SFs for VS

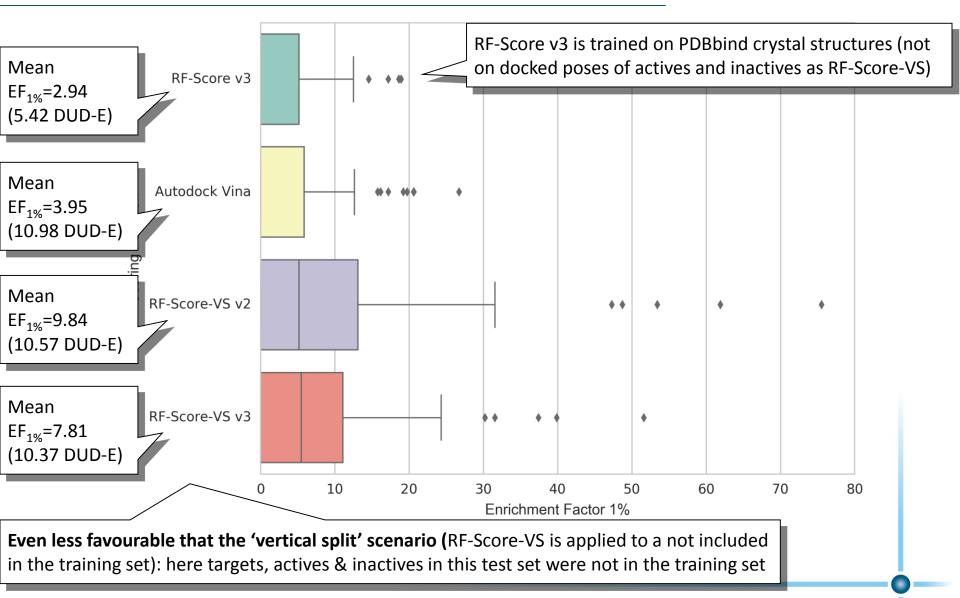


Wójcikowski M, Ballester PJ & Siedlecki P (2017) Scientific Reports (dx.doi.org/10.1038/srep46710)

DEKOIS: validating RF-Score-VS on unseen targets

- DEKOIS 2.0: Bauer et al. 2013 (dx.doi.org/10.1021/ci400115b)
- 81 targets: we used 76 targets (4 in DUD-E, 1 w/out crystal struct.)
- filtered out any nearly identical ligand or decoy to any ligand/decoy present in DUD-E (tanimoto score of at least 0.99; OpenBabel FP2 fingerprints).
- Each DEKOIS target has 40 ligands and 1200 decoys, our pruning removed on average 18.6 (46.5%) ligands and 188 (15.7%) decoys.
- retained DEKOIS 2.0 ligands & decoys were docked using Autodock
 Vina with default settings, as previously done with DUD-E.
- Re-score with RF-Score-VS trained on entire DUD-E data> available at <u>https://github.com/oddt/rfscorevs_binary</u>
- NEXT: reporting performance of RF-Score-VS on DEKOIS data

DEKOIS: validating RF-Score-VS on unseen targets



Wójcikowski M, Ballester PJ & Siedlecki P (2017) Scientific Reports (dx.doi.org/10.1038/srep46710)

Summary

- Machine-learning SFs shown to be more accurate than classical SFs at predicting pKd of diverse protein-ligand complexes
- The performance of RF-Score improves with training set size, but not that of classical SFs (MLR-based) → gap will broaden
- Regarding structural descriptors, data-driven Feature Selection (FS) leads to more predictive SFs than knowledge-based FS
- A target-specific RF-Score-VS can be built for any target with at least one ligand-bound crystal structure and some actives
- Much room for improvement: other ML algorithms, more targets and training data, identifying the best SF for each target...

Acknowledgements

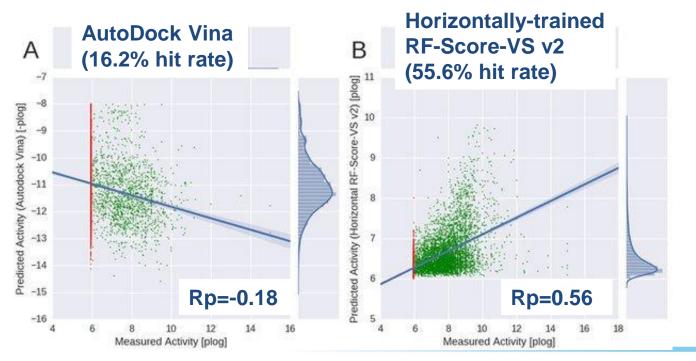
Collaborators

- Hongjian Li, Kwong-Sak Leung, Man-Hon Wong (Chinese University of Hong Kong)
- Adrian Schreyer, Tom Blundell (University of Cambridge)
- John Mitchell (University of Cambridge)
- Maciek Wójcikowski (University of Warsaw)
- Pawel Siedlecki (University of Warsaw)

DUD-E: scoring in the presence of inactives

RF-Score-VS: need to exploit inactive data too

- top 1% of all docked molecules ranked by predicted binding affinity (from 5CV of RF-Score-VS v2, directly with Vina)
- Red points indicate inactive compounds (false positives), green points are actives (true positives) within top 1% of each SF



Wójcikowski M, Ballester PJ & Siedlecki P (2017) Scientific Reports (dx.doi.org/10.1038/srep46710)

Interface

Prospective application of RF-Score v1 (2012)

Hierarchical virtual screening for the discovery of new molecular scaffolds in antibacterial hit identification

Pedro J. Ballester^{1,*,†}, Martina Mangold^{2,†}, Nigel I. Howard², Richard L. Marchese Robinson², Chris Abell², Jochen Blumberger³ and John B. O. Mitchell⁴

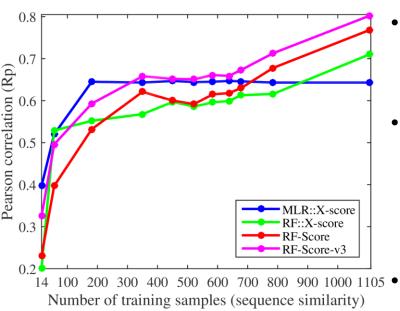
- DHQase-2: only three known active scaffolds (1 from HTS)
- Hierarchical VS: USR (3) on 9M cpds > GOLD on 4K USR hits → RF-Score → test top 148 cpds (N. Howard, Univ of Cambridge)
- Very high hit rates of ~ 25% with Ki ≤ 100 µM → 100 new and structurally diverse actives (£5,000 cost)

Overall Performance	K _i ≤100μM	K _i ≤250μM	$(L^1, L^2, L^3)[\mu M]$
Against Mtb DHQase	35 (23.6%)	89 (60.1%)	(23, 24, 40)
Against Scl DHQase	40 (27.0%)	91 (61.5%)	(4, 21, 29)

Impact of similarities between training/test proteins

The Impact of Protein Structure and Sequence Similarity on the Accuracy of Machine-Learning **Scoring Functions for Binding Affinity Prediction**

Gang Lu⁵ and Pedro J. Ballester ^{6,7,8,9,*}



- Hongjian Li^{1,2,3}, Jiangjun Peng^{2,4}, Yee Leung², Kwong-Sak Leung^{2,3}, Man-Hon Wong³, Biomolecules 2018, 8(1), 12; doi:10.3390/biom8010012
 - Test set from PDBbind benchmark (2007 core set with 195 complexes). Each point is the Rp of a SF on this common test set
 - Each SF trained on nested training sets (e.g. 1st training set with 14 complexes comes from removing all training complexes with protein sequence similarity > 0.2 to the protein of at least one test complex. Larger sets obtained with higher thresholds
 - Unlike X-Score, RF-Score improves when the complexes with the most similar proteins are included in the training set, but not only from them!

Train/test on crystal structures vs docking poses

Correcting the impact of docking pose services generation error on binding affinity prediction

Hongjian Li¹, Kwong-Sak Leung¹, Man-Hon Wong¹ and Pedro J. Ballester^{2,3,4,5*}

BMC Bioinformatics2016,17(Suppl 11):308; doi:10.1186/s12859-016-1169-4

Table 1 Performance of the four models trained on crystal and
docked poses and tested also on crystal and docked poses(schemes 1 and 2) on the PDBbind v2007 benchmark. Comparing
the same models from the two first blocks (crystal:crystal and
crystal:docked) shows that the pose generation error also
introduces a small degradation in the test set performance.
Making the same comparisons between the second and fourth
blocks shows that a substantial part of this error has been
corrected

Model	Training	Test	RMSE	SD	Rp	Rs
1 (Vina)	Crystal	Crystal	2.41	1.99	0.554	0.608
2 (MLR::Vina)	Crystal	Crystal	1.88	1.85	0.630	0.680
3 (RF::Vina)	Crystal	Crystal	1.66	1.59	0.744	0.752
4 (RF::VinaElem)	Crystal	Crystal	1.52	1.42	0.803	0.799
1 (Vina)	Crystal	Docked	2.02	1.98	0.557	0.597
2 (MLR::Vina)	Crystal	Docked	1.90	1.87	0.622	0.670
3 (RF::Vina)	Crystal	Docked	1.76	1.72	0.693	0.710
4 (RF::VinaElem)	Crystal	Docked	1.60	1.52	0.772	0.771
2 (MLR::Vina)	Docked	Crystal	1.91	1.88	0.618	0.648
3 (RF::Vina)	Docked	Crystal	1.74	1.69	0.705	0.716
4 (RF::VinaElem)	Docked	Crystal	1.58	1.45	0.794	0.790
2 (MLR::Vina)	Docked	Docked	1.86	1.83	0.640	0.667
3 (RF::Vina)	Docked	Docked	1.69	1.63	0.730	0.730
4 (RF::VinaElem)	Docked	Docked	1.55	1.45	0.795	0.789

- Binding affinity prediction is often carried out on the docked pose of a known binder rather than its co-crystallised pose.
 - Our results suggest than pose generation error is in general far less damaging for binding affinity prediction than it is currently believed.
- Another contribution of our study is the proposal of a procedure that largely corrects for this error.
- The resulting machine-learning scoring function, RF-Score v4 is freely available at <u>http://ballester.marseille.inserm.fr/rf-score-4.tgz</u>

Support Vector Regression (SVR)-Score

The SVR RBF kernel implementation in the caret package [34] of the statistical software suite R was used. As with previous studies [16], grid search was conducted on the gamma parameter in the RBF kernel (γ) and the cost of constraint violation parameter (C) to give the best performance in a five-fold cross-validation of the training set. In each cross-validation, SVR was trained using the 36 combinations of parameter values arising from $\gamma \in \{0.01, 0.1, 1, 10, 100, 1000\}$ and $C \in \{0.25, 0.5, 1, 2, 4, 8\}$. Thereafter, the average root mean square error between predicted and measured binding affinity across the five cross-validation sets (i.e. those not used to train the SVR) was calculated for each (γ ,C) combination and that with the lowest value was selected to train on the entire training set to give SVR-Score=SVR(γ =0.1,C=1). This model selection procedure is intended to find the model that is most likely to generalize to independent test data sets. When ran on the independent test set, SVR-Score achieved a Pearson's correlation of R=0.726, Spearman's correlation Rs=0.739 and standard deviation SD=1.70 as illustrated in Figure 2 (left).

https://doi.org/10.1007/978-3-642-34123-6_2

