Energy-Structure-Function maps for functional molecular crystals

UK-QSAR & MGMS, Structure-Activity Relationships
11 January, 2018

Graeme Day
Chemistry, University of Southampton
www.crystalstructureprediction.net
Crystal engineering

Understanding relationship between molecular structure and crystal packing

molecule
(1,4-bis-p-cyano-styrylbenzene)

crystal structure

property: Fluorescence
Single crystal under UV (365 nm)

“design” of materials with targeted properties

Structure-property relationships

and
The challenge of design in molecular crystals

Target property (e.g. luminescence)

$\lambda_{\text{emission}}^{\text{max}}$ 532 nm

generally a function of intrinsic molecular properties

The challenge of design in molecular crystals

target property (e.g. luminescence)

\[\lambda_{\text{emission}}^{\text{max}} = 532 \text{ nm} \]

\[\lambda_{\text{emission}} = 462 \text{ nm} \]

generally a function of intrinsic molecular properties

and

solid state arrangement
The challenge of design in molecular crystals

Our challenge

- Molecular synthesis is well developed, relatively reliable, and transferable routes to creating chemical functionality
 - But what should we synthesise?

- Unpredictability of crystallisation - self-assembly process
 - What will be the solid state structure of molecule X?

- Structure-function relationship can be complex
 - What packing arrangement do we want?

\[
\lambda_{\text{emission}}^{\text{max}} \quad 532 \text{ nm} \quad 462 \text{ nm}
\]

(target property (e.g. luminescence)

generally a function of intrinsic molecular properties and solid state arrangement
Crystal structure prediction (CSP)

What we hope to get out of CSP

- A complete (as possible) set of the possible crystalline structures for a given molecule (or mixture of molecules).
- Their relative stabilities.
 - lattice energies
 - recent progress: quasi-harmonic free energies: P, T-dependence of structures and relative stabilities
- Structures that are “accurate enough”
 - as models for structure determination
 - for property prediction
Crystal structure prediction (CSP)

Generate crystal structures with all low energy conformers
- sample: molecular positions & orientations, unit cell dimensions
- allow different space group symmetries

Lattice energy minimisation
- intermolecular: anisotropic atom-atom force fields
- DFT intramolecular

Low-discrepancy sampling

Global Lattice Energy Explorer

DMACRYS
PCCP, 12, 8478 (2010)
Crystal structure prediction (CSP)

Generate crystal structures with all low energy conformers.

- Sample: molecular positions & orientations, unit cell dimensions
- Allow different space group symmetries

Low-discrepancy sampling

Global Lattice Energy Explorer

Conformer searching with QM methods

Relative lattice energy (kJ/mol)

DFT intramolecular

DMACRYS

PCCP, 12, 8478 (2010)

Density (g/cm³)

Grey = X-ray diffraction determined structure of thermodynamically stable form

Black = global minimum from CSP

Grey = X-ray diffraction determined structure of thermodynamically stable form

Black = global minimum from CSP

Distributions of energy minima

Day et al, PCCP (2007), 9, 1693

Nyman & Day, CrystEngComm (2015), 17, 5154

crystal packing is susceptible to small chemical changes
CSP in materials exploration

Case study: computer-guided discovery of a porous molecular crystal
Target property: **Methane storage**

- Volumetric deliverable capacity is most relevant metric
- **Deliverable capacity** = storage capacity – residual capacity
- Records: 180–190 v STP/v
- > 150 v STP/v is ‘good’

Methane deliverable capacities for the best reported materials (all are metal organic frameworks)

<table>
<thead>
<tr>
<th>Material</th>
<th>Uptake at 65 bar (v STP/v)</th>
<th>Deliverable capacity (v STP/v)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKUST-1</td>
<td>262</td>
<td>181</td>
<td>b</td>
</tr>
<tr>
<td>MOF-5</td>
<td>215</td>
<td>185</td>
<td>b</td>
</tr>
<tr>
<td>PCN-14</td>
<td>240</td>
<td>160</td>
<td>b</td>
</tr>
<tr>
<td>Mg-MOF-74</td>
<td>230</td>
<td>143</td>
<td>b</td>
</tr>
<tr>
<td>Ni-MOF-74</td>
<td>259</td>
<td>141</td>
<td>b</td>
</tr>
<tr>
<td>Co-MOF-74</td>
<td>249</td>
<td>136</td>
<td>b</td>
</tr>
<tr>
<td>NU-125</td>
<td>232</td>
<td>183</td>
<td>c</td>
</tr>
<tr>
<td>NU-111</td>
<td>206</td>
<td>179</td>
<td>c</td>
</tr>
<tr>
<td>UTSA-20</td>
<td>230</td>
<td>170</td>
<td>c</td>
</tr>
<tr>
<td>UTSA-80a</td>
<td>233</td>
<td>174</td>
<td>d</td>
</tr>
<tr>
<td>Co(bdp)</td>
<td>203</td>
<td>197</td>
<td>e</td>
</tr>
</tbody>
</table>

a The difference in uptake between 65 bar and 5.8 bar [for T2, HKUST-1, MOF-5, & Co(bdp)] or 5 bar (for the rest).
Design Hypothesis – rigid molecular core + strong, directional interactions to form porous networks

Question – which of a set of candidate molecules is most likely to give properties we require for a given application?

Nature (2017), 543, 657-664
Porous crystal discovery: energy – density distributions

Porous crystal discovery: energy – density distributions

Grand canonical Monte Carlo on each structure: CH$_4$ uptake at storage and depletion pressures
Energy-structure-function maps: methane deliverable capacity

At a glance, these show that T2 and P2 are more promising for methane storage than T0, T1, S1, P1, P1M, S2, P2M (not shown).
Porous crystal discovery: **T2 solvent stabilisation**

Some, *but not all*, porous structures can be stabilised with respect to the global minimum. Stabilising influence of different solvents varies between porous structures → possible solvent selectivity.
T2 synthesis and crystallisation screening

Structures found during crystallisation screening:
- T2-α
- T2-β
- T2-γ
- T2-δ

All can be desolvated, if done carefully.

predicted (red) vs X-ray structure (blue)

Density (g cm⁻³):
- T2-α: 0.412 g cm⁻³
- T2-β: 0.412 g cm⁻³
- T2-γ: 0.412 g cm⁻³
- T2-δ: 0.412 g cm⁻³

Pore size: 1.99 nm

Relative lattice energy (kJ mol⁻¹):
- T2-α
- T2-β
- T2-γ
- T2-δ

post-publication
Sublimation at
P = 1 x 10⁻³ hPa (10⁻⁶ bar)
T= 700 °C

RMSD₃₀ = 0.135 Å

Nature (2017), 543, 657-664
T2 synthesis and crystallisation screening

 Structures found during crystallisation screening:

- T2-α
- T2-β
- T2-γ
- T2-δ

predicted (red) vs X-ray structure (blue)

density: 0.412 g cm\(^{-3}\)
pore size: 1.99 nm

Cambridge Structural Database density distribution
Molecular crystals, C, N, O, H

Nature (2017), 543, 657-664
Sorption isotherms can be predicted \textit{a priori}.

\textbf{T2 experimental vs predicted properties}

Increasing pressure

\textit{expt vs grand canonical Monte Carlo}

![Graph showing CH$_4$ uptake vs pressure for different T2 structures.](image)
ESF maps for gas selectivity

Energy-Structure-Function maps can be produced for any target property that is calculable from crystal structure.

C_3H_8 / CH_4 selectivity prediction

![Graph showing energy vs density for C_3H_8/CH_4 selectivity and IAST selectivity](image-url)
Electron or hole transport in molecular crystals

High mobility organic semiconductors

High mobilities often seen in polyaromatic hydrocarbons, *eg.* pentacene.

hoping rate

\[
k = \left(\frac{t^2}{\hbar}\right)\left(\frac{\pi}{\lambda kT}\right)^{\frac{1}{2}}e^{-\frac{\lambda}{4kT}} \rightarrow \text{mobility}
\]

\(\lambda = \text{molecular reorganisation energy: molecular property}\)

\(t = \text{electronic coupling (transfer integral): depends on packing}\)
Pentacene hole mobility landscape

Extracting structure-property relationships

Effects of substitution on the packing landscape

Recall pentacene mobility results:

Effects of substitution on the packing landscape

The mobility landscape is very sensitive to molecular and crystal structure.

Towards higher-throughput ESF map generation

- CSP calculations on rigid, pentacene-sized molecules now < 1 day (using ~200 CPUs)
- Property predictions become the limiting step
- Machine learning looks promising for accelerating property predictions.

\[k = \left(\frac{t^2}{\hbar} \right) \left(\frac{\pi}{\lambda kT} \right)^{\frac{1}{2}} e^{\left(-\frac{\lambda}{4kT} \right)} \]

\[\text{Prediction MAE for the TI [eV]} \]

Percentage of Training Dimers

SOAP descriptor and structural similarity

$$\rho_{\chi^\alpha}^A(r) = \sum_{k \in A^\alpha} \exp \left(\frac{(r - r_k)^2}{2\sigma^2} \right) f_{r_k}(|r_k|).$$

$$k\left(\chi^A_i, \chi^B_j\right) = \int_{\text{SO}(3)} \left| \sum_{\alpha} \int_{\mathbb{R}^3} \rho_{\chi^\alpha}^A(r) \rho_{\chi^\beta}^B(r) dr \right|^2 d\hat{R},$$

$$C_{ij}(A, B) = k\left(\chi^A_i, \chi^B_j\right) / \sqrt{k\left(\chi^A_i, \chi^A_i\right) k\left(\chi^B_j, \chi^B_j\right)}.$$
Summary

• Crystal structure prediction methods are finding an increasing role in materials discovery, particularly where combined with property prediction calculations.

• Energy-structure-function maps: at-a-glance assessment of possible properties for a molecule

• Based on predictive calculations (CSP + property simulations).
 • Can study hypothetical molecules → helps prioritise synthesis

• Could be used for any calculable property
 • Use for pharmaceutical materials: property variability across the polymorphic landscape (mechanical properties, crystal habit)
 • Crystal structure landscapes are rich with structure-property relationship information: many crystal structures of the same molecule.
 • Structure classification methods (SOAP, HDBSCAN*) will help develop solid-state structure-property relationships.
Acknowledgements

Collaborators

Prof. Andrew Cooper
Dr Linjiang Chen
Dr Tomasz Kaczorowski
Dr Daniel Holden
Dr Marc A. Little
Dr Samantha Y. Chong
Dr Benjamin J. Slater,
Dr Baltasar Bonillo,
Dr Andrew Stephenson,
Dr Christopher M. Kane,
Dr Rob Clowes,
Dr Tom Hasell,
Chloe J. Stackhouse

HPC:
Iridis (Southampton)
ARCHER – EPSRC HEC Materials Chemistry Consortium,
EP/L000202