Introduction

We present the Hotspots API, a Python toolkit for the detection of small molecule binding hotspots and application of results to structure-based drug discovery (SBDD) methods.

Motivations
- Programmatic access to algorithm and integration
- Platform for collaboration
- Pathway for productisation

SuperStar

Using **IsoStar** data, interaction propensities are mapped to functional groups on the target molecule highlighting likely interactions.

Fragment Hotspot Maps

Predicts the location of small molecule binding hotspots in proteins. Weights SuperStar by pocket burial and samples with pseudomolecular probes.

Hotspots API

- Programmatic access to hotspots
- Growing support for SBDD applications
- Built on top of the CSD Python API (CSD License required)
- Latest stable package on PyPi and GitHub

Use Cases

1. **Tractability Assessment**
 - Calculate Maps
 - Restrict to “Drug” Volume ~500 Å³
 - Sort by median score value
 - Plot scores distributions

2. **Improving Docking with GOLD**
 - Supports application of results to GOLD docking
 - Previous work has shown improved early enrichment when using hotspot H-bond constraints for VS

Pharmacophore Modelling

- Overlaid ligands
- A hotspot result

Generated pharmacophore can be used to:
- Search CSD & PDB with CSD-CrossMiner
- Search ZINC with Pharmit

Future

- Global Pharmacophoric Analysis
 - **The work on the Hotspot API supports futures objectives**
 - Using PD8 data, this project aims to map “global” pharmacophoric space of protein hotspots
 - Then, design a virtual small molecule screening library covering it
 - We aim to increase the biological relevance of screening libraries to improve HTS efficiency

Options:
- 1. H-Bond Constraint
- 2. Apolar fitting points
- 3. Rescore

Constraint

- IF 1%
- No Constraint: 9.8
- 1 constraint (penalty = 10): 12.7
- 1 constraint (penalty = 100): 15.7

AKT1 (PDB: 3cqw)

Global Pharmacophoric Analysis

- The work on the Hotspot API supports futures objectives
- Using PD8 data, this project aims to map “global” pharmacophoric space of protein hotspots
- Then, design a virtual small molecule screening library covering it
- We aim to increase the biological relevance of screening libraries to improve HTS efficiency